PRACTICE 11: ELASTIC FORCE. HOOKE'S LAW.

According to the drawing, place on the weighing pan the masses you can find	d
on the table.	

Measure the elongation in each case and gather the data in the following table:

mass (g)	20	60	110	160
mass (kg)				
Force – Weight- (N)				
l _o = initial length (cm)				
l = final length (cm)				
$\Delta l = l - l_o (cm)$				
$\Delta l(m)$				

Data: $g_{Earth} = 9.8 \ m/s^2$

Note: Round to only one decimal for the Weight

1. Represent the graph Weight (N) -vertical axis- versus elongation $\Delta \mathbf{l}$ (cm) -horizontal axis-.

2. Answer:

a) Is there any relation between the weight and the elongation? Do you remember the formula of Hooke's Law?

.....

-
- b) What type of graph corresponds to that relation?
 -
- c) Using the graph, calculate the mass you would need for the spring to elongate 2 cm.

.....

d) Using the graph, calculate the elongation of the spring if we hung a mass of 40 g.

.....

e) Calculate the elastic constant of the spring (k). (You need to remember the formula of Hooke's Law)